76 research outputs found

    Multi-view Face Pose Classification by Boosting with Weak Hypothesis Fusion Using Visual and Infrared Images

    Get PDF
    This paper proposes a novel method for multi-view face pose classification through sequential learning and sensor fusion. The basic idea is to use face images observed in visual and thermal infrared (IR) bands, with the same sampling weight in a multi-class boosting structure. The main contribution of this paper is a multi-class AdaBoost classification framework where information obtained from visual and infrared bands interactively complement each other. This is achieved by learning weak hypothesis for visual and IR band independently and then fusing the optimized hypothesis sub-ensembles. In addition, an effective feature descriptor is introduced to thermal IR images. Experiments are conducted on a visual and thermal IR image dataset containing 4844 face images in 5 different poses. Results have shown significant increase in classification rate as compared with an existing multi-class AdaBoost algorithm SAMME trained on visual or infrared images alone, as well as a simple baseline classification-fusion algorithm

    Image Classification by Multi-Class Boosting of Visual and Infrared Fusion with Applications to Object Pose Recognition

    Get PDF
    This paper proposes a novel method for multiview object pose classification through sequential learning and sensor fusion. The basic idea is to use images observed in visual and infrared (IR) bands, with the same sampling weight under a multi-class boosting framework. The main contribution of this paper is a multi-class AdaBoost classification framework where visual and infrared information interactively complement each other. This is achieved by learning hypothesis for visual and infrared bands independently and then fusing the optimized hypothesis subensembles. Experiments are conducted on several image datasets including a set of visual and thermal IR images containing 4844 face images in 5 different poses. Results have shown significant increase in classification rate as compared with an existing multi-class AdaBoost algorithm SAMME trained on visual or infrared images alone, as well as a simple baseline classification-fusion algorithm

    Adaptive appearance learning for visual object tracking

    Get PDF
    This paper addresses online learning of reference object distribution in the context of two hybrid tracking schemes that combine the mean shift with local point feature correspondences, and the mean shift under the Bayesian framework, respectively. The reference object distribution is built up by a kernel-weighted color histogram. The main contributions of the proposed schemes includes: (a) an adaptive learning strategy that seeks to update the reference object distribution when the changes are caused by the intrinsic object dynamic without partial occlusion/ intersection; (b) novel dynamic maintenance of object feature points by exploring both foreground and background sets; (c) integration of adaptive appearance and local point features in joint object appearance similarity and local point features correspondences-based tracker to improve [7]; (d) integration of adaptive appearance in joint appearance similarity and particle filter tracker under the Bayesian framework to improve [10]. Experimental results on a range of videos captured by a dynamic/stationary camera demonstrate the effectiveness of the proposed schemes in terms of robustness to partial occlusions, tracking drifts and tightness and accuracy of tracked bounding box. Comparisons are also made with the two hybrid trackers together with 3 existing trackers

    Visual Tracking and Dynamic Learning on the Grassmann Manifold with Inference from a Bayesian Framework and State Space Models

    Get PDF
    We propose a novel visual tracking scheme that exploits both the geometrical structure of Grassmann manifold and piecewise geodesics under a Bayesian framework. Two particle filters are alternatingly employed on the manifold. One is used for online updating the appearance subspace on the manifold using sliding-window observations, and the other is for tracking moving objects on the manifold based on the dynamic shape and appearance models. Main contributions of the paper include: (a) proposing an online manifold learning strategy by a particle filter, where a mixture of dynamic models is used for both the changes of manifold bases in the tangent plane and the piecewise geodesics on the manifold. (b) proposing a manifold object tracker by incorporating object shape in the tangent plane and the manifold prediction error of object appearance jointly in a particle filter framework. Experiments performed on videos containing significant object pose changes show very robust tracking results. The proposed scheme also shows better performance as comparing with three existing trackers in terms of tracking drift and the tightness and accuracy of tracked boxes

    Riemannian Manifold-Based Support Vector Machine for Human Activity Classification in Images

    Get PDF
    This paper addresses the issue of classification of human activities in still images. We propose a novel method where part-based features focusing on human and object interaction are utilized for activity representation, and classification is designed on manifolds by exploiting underlying Riemannian geometry. The main contributions of the paper include: (a) represent human activity by appearance features from image patches containing hands, and by structural features formed from the distances between the torso and patch centers; (b) formulate SVM kernel function based on the geodesics on Riemannian manifolds under the log-Euclidean metric; (c) apply multi-class SVM classifier on the manifold under the one-against-all strategy. Experiments were conducted on a dataset containing 2750 images in 7 classes of activities from 10 subjects. Results have shown good performance (average classification rate of 95.83%, false positive 0.71%, false negative 4.24%). Comparisons with three other related classifiers provide further support to the proposed method

    Signal Processing and Classification Tools for Intelligent Distributed Monitoring and Analysis of the Smart Grid

    Get PDF
    This paper proposes a novel framework for an intelligent monitoring system that supervises the performance of the future power system. The increased complexity of the power system could endanger the reliability, voltage quality, operational security or resilience of the power system. A distributed structure for such a monitoring system is described and some of the advanced signal processing techniques or tools that could be used in such a monitoring system are given. Several examples for seeking the spatial locations and finding the underlying causes of disturbances are included

    A Method to Evaluate Harmonic Model-Based Estimations under Non-White Measured Noise

    Get PDF
    Automatic extracting information from power-system event recordings requires applications of signal-processing estimation techniques whose performance has been verified under white noise. This paper proposes a method to test these techniques under real power-system noise, which is very different from white noise, to evaluate their application feasibility. The first part of the paper describes the evaluation method used to evaluate the techniques in a statistical sense and a method to extract noise from measured power-system recordings. The second part of the paper focuses on the evaluation of a number of harmonic model-based techniques under non-white noise, including: Kalman filter, MUSIC, ESPRIT, and segmentation algorithms. The paper shows that for the Kalman filter, a very high order with high computational burden is necessary only if high frequency components are of interest. The application of MUSIC, ESPRIT, and the segmentation algorithms under natural power-system noise is shown to be feasible

    On High Order Tensor-based Diffusivity Profile Estimation

    Get PDF
    Diffusion weighted magnetic resonance imaging (dMRI) is used to measure, in vivo, the self-diffusion of water molecules in biological tissues. High order tensors (HOTs) are used to model the apparent diffusion coefficient (ADC) profile at each voxel from the dMRI data. In this paper we propose: (i) A new method for estimating HOTs from dMRI data based on weighted least squares (WLS) optimization; and (ii) A new expression for computing the fractional anisotropy from a HOT that does not suffer from singularities and spurious zeros. We also present an empirical evaluation of the proposed method relative to the two existing methods based on both synthetic and real human brain dMRI data. The results show that the proposed method yields more accurate estimation than the competing methods

    Novel Segmentation Technique for Measured Three-Phase Voltage Dips

    Get PDF
    This paper focuses on issues arising from the need to automatically analyze disturbances in the future (smart) grid. Accurate time allocation of events and the sequences of events is an important part of such an analysis. The performance of a joint causal and anti-causal (CaC) segmentation method has been analyzed with a set of real measurement signals, using an alternative detection technique based on a cumulative sum (CUSUM) algorithm. The results show that the location in time of underlying transitions in the power system can be more accurately estimated by combining CaC segmentation methods
    • …
    corecore